

CREATININE

KINETIC METHOD – JAFFE REACTION (without deproteinisation)

REF NO DESCRIPTION CS604 CREATININE

PAKAGE SIZE

CS 604-1	2 X 500 ML	CS 604-5	2 X 50 ML
CS 604-2	2 X 200 ML	CS 604R1-5	5 L
CS 604-3	6 X 50 ML	CS 604R2-5	5 L
CS 604-4	2 X 100 ML		

INTENDED USE

This reagent is intended for in vitro quantitative determination of Creatinine in serum & plasma

INTENDED USER: Professional Use Only

CLINICAL SIGNIFICANCE

Creatinine is formed in muscles from Phospho Creatinine. It is an important form of energy, being a store of high-energy phosphate. Creatinine determinations have one advantage over Urea determination that it is not affected by a high protein diet.

Serum Creatinine is more specific & sensitive indicator of renal function. Simultaneous estimations of serum Urea & Creatinine provide better information. Serum Urea nitrogen, Creatinine ratio is > 15 in pre renal failure, & < 10 in renal failure.

Decreased levels are found in muscle dystrophy.

Clinical diagnosis should not be made on a single test result; it should integrate clinical and other laboratory data.

PRINCIPLE

In the Jaffe reaction, Creatinine react with alkaline picrate to produce a reddish - orange color the intensity of which at 490 nm is directly proportional to the Creatinine concentration.

Alkali

Creatinine + sodium picrate -----> Creatinine - picrate complex (reddish orange color)

REAGENT COMPOSITION

Creatinine R1 (SL) Acid Reagent

Picric acid 35 mmol/L
Creatinine R2 (SL) Alkaline Reagent
Sodium Hydroxide 320 mmol/L
Creatinine Standard

Creatinine standard concentration 2 mg/dL or 177 µmol/L

REAGENT STORAGE AND STABILITY

The reagents are stable, if protected from light, up to the stated expiry date when stored at 15 - 25° C.

PREPARATION OF WORKING REAGENT

Mix 1 volume of Reagent 1(R1) with 1 volume of Reagent 2 (R2) Ensure working reagent is at 25-30°C before use.

SPECIMEN

Serum is recommended, however heparinized plasma may also be used. Creatinine is stable for 24 hours at 2-8° C

PRECAUTION

To avoid contamination, use clean laboratory wares. Avoid direct exposure of reagent to light.

ASSAY

Wavelength : 490 nm
Cuvette : 1 cm light path
Temperature : 20-30°C

Measurement : Against air, increasing absorbance

PROCEDURE

Pipette into cuvettes	Blank	Standard	Sample
Working reagent	1000 μL	1000 μL	1000 μL
Standard		100 μL	
Sample			100 μL

Mix well immediately in each case, simultaneously start the stopwatch. After 30 seconds measure absorbance A 1. Exactly 2 minutes after the measurement determine absorbance A2.

A2 - A1 =Δ A

CALCULATION

To convert mg/dL to μ mol/L multiply by 88.4

LINEARITY

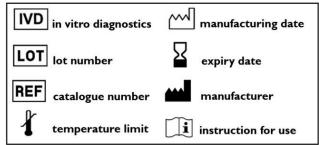
This reagent is linear up 13 mg/dL

If the concentration is greater than linearity (13 mg/dL), dilute the sample 1+5 with physiological saline (NaCl; 9g/L) and repeat the assay. Multiply the result by 6.

NORMAL RANGE

Serum Creatinine

Male	0.7-1.4 mg/dL	62-124 μmol/L
Female	0.7-1.2 mg/dL	62-106 μmol/L


QUALITY CONTROL

All control sera with Creatinine value determined by this method may be used.

NOTES

- 1- The assay is not influenced by glucose 6g/l, bilirubin 20mg/l, ascorbic acid 10 mg/l, acetone 10mmol/L or acetoacetic acid 1 mmol/l.
- 2- Reagent is highly dependent upon temperature, so a constant reaction temperature is required for both standard and sample within one series.
- 3- Reagent 1 (picric acid) is a strong oxidizing agent avoid contact with skin. Wipe any spillages as picric acid is explosive.
- 4- Reagent 2 (NaOH) is caustic. Do not swallow avoid contact with skin and mucous membrane.

SYMBOL ON LABELS

BIBILOGRAPHY

- 1- Fabing D. L. and Erthingghausen. G.; Clin. Chem. 17.391, 1971.
- Young. D.S. et al.; Clin. Chem. 21,286D, 1975Trinder, P. Ann. Clin. Biochem, 6,24,1969.
- Tietz, N.W. (Ed,); Textbook of Clinical Chemistry, W.B. Saunders, 1271, 1986

CRESCENT DIAGNOSTICS FACTORY

CS604-CRE-K